8 research outputs found

    Tetrahedral Image-to-Mesh Conversion Software for Anatomic Modeling of Arteriovenous Malformations

    Get PDF
    We describe a new implementation of an adaptive multi-tissue tetrahedral mesh generator targeting anatomic modeling of Arteriovenous Malformation (AVM) for surgical simulations. Our method, initially constructs an adaptive Body-Centered Cubic (BCC) mesh of high quality elements. Then, it deforms the mesh surfaces to their corresponding physical image boundaries, hence, improving the mesh fidelity and smoothness. Our deformation scheme, which builds upon the ITK toolkit, is based on the concept of energy minimization, and relies on a multi-material point-based registration. It uses non-connectivity patterns to implicitly control the number of the extracted feature points needed for the registration, and thus, adjusts the trade-off between the achieved mesh fidelity and the deformation speed. While many medical imaging applications require robust mesh generation, there are few codes available to the public. We compare our implementation with two similar open-source image-to-mesh conversion codes: (1) Cleaver from US, and (2) CGAL from EU. Our evaluation is based on five isotropic/anisotropic segmented images, and relies on metrics like geometric & topologic fidelity, mesh quality, gradation and smoothness. The implementation we describe is open- source and it will be available within: (i) the 3D Slicer package for visualization and image analysis from Harvard Medical School, and (ii) an interactive simulator for neurosurgical procedures involving vasculature using SOFA, a framework for real-time medical simulation developed by INRIA

    Endoscopic Endonasal Transclival Approaches: Case Series & Outcomes for Different Clival Regions

    Get PDF
    Objective Transclival endoscopic endonasal approaches to the skull base are novel with few published cases.We report our institution’s experience with this technique and discuss outcomes according to the clival region involved. Design Retrospective case series. Setting Tertiary care academic medical center Participants All patients who underwent endoscopic endonasal transclival approaches for skull base lesions from 2008 to 2012. Main Outcome Measures Pathologies encountered, mean intraoperative time, intraoperative complications, gross total resection, intraoperative cerebrospinal fluid (CSF) leak, postoperative CSF leak, postoperative complications, and postoperative clinical course. Results A total of 49 patients underwent 55 endoscopic endonasal transclival approaches. Pathology included 43 benign and 12 malignant lesions. Mean follow-up was 15.4 months. Mean operative time was 167.9 minutes, with one patient experiencing an intraoperative internal carotid artery injury. Of the 15 cases with intraoperative cerebrospinal fluid (CSF) leaks, 1 developed postoperative CSF leak (6.7%). There were six other postoperative complications: four systemic complications, one case of meningitis, and one retropharyngeal abscess. Gross total resection was achieved for all malignancies approached with curative intent. Conclusions This study provides evidence that endoscopic endonasal transclival approaches are a safe and effective strategy for the surgical management of a variety of benign and malignant lesions

    A New Window for the Treatment of Posterior Cerebral Artery, Superior Cerebellar Artery, and Basilar Apex Aneurysm: The Expanded Endoscopic Endonasal Approach

    Get PDF
    To explore the feasibility of an endoscopic endonasal transclival approach to treat aneurysms arising in the basilar apex, posterior cerebral arteries, and superior cerebellar arteries

    Using the Endoscopic Endonasal Transclival Approach to Access Aneurysms Arising from AICA, PICA, and Vertebral Artery: An Anatomical Study

    Get PDF
    Objective To explore the use of the endoscopic endonasal transclival approach (EEA) for clipping anterior inferior cerebellar artery (AICA), posterior inferior cerebellar artery (PICA), and vertebral artery (VA) aneurysms

    Ruptured Arteriovenous Malformation Presenting with Kernohan’s Notch

    No full text
    AVMs are congenital lesions that predispose patients to intracranial hemorrhage and resultant neurological deficits. These deficits are often focal and due to the presence of local neurologic disruption from hemorrhage in the contralateral cerebral hemisphere. We present a rare case of a patient with ipsilateral neurological deficits due to Kernohan’s Notch phenomenon resulting from hemorrhage from an AVM. A 31-year-old woman with seizures underwent MR and angiographic imaging which confirmed an unruptured left parietal AVM. The patient declined treatment and presented with obtundation 4 years later. Imaging revealed an acute left parietal ICH and SDH with significant mass effect. The patient underwent emergent hemicraniectomy and hematoma evacuation. Postoperatively, she made significant improvement and was following commands contralaterally with ipsilateral hemiplegia. MR imaging revealed right Kernohan’s Notch. The patient had significant rehabilitation with neurological improvement. She eventually underwent elective embolization followed by subsequent surgical resection and bone replacement. Three years from the initial hemorrhage, the patient had only mild left-sided weakness and ambulates without assistance. A false localizing sign, Kernohan’s Notch phenomenon, should be considered in the setting of AVM hemorrhage with paradoxical motor impairment and can be identified through MRI

    Rationale and Design for a GRADE Substudy of Continuous Glucose Monitoring

    No full text
    corecore